
ASTR 535 : Observational Techniques

Light, magnitudes, and the signal equation
  Light and its measured quantities



Learning objectives

• Know the basic characteristics of light: energy, frequency and 
wavelength, and how they are related. Know the different regimes in 
the electromagnetic spectrum, the units used to characterize the 
different regimes, and characteristic wavelengths for each regime.
• Have a complete understanding of the difference between surface 

brightness, flux, and luminosity and their units.
• Recognize and understand that flux (or surface brightness or 

luminosity) is generally a function of wavelength/frequency and can 
be specified per unit wavelength or per unit frequency and how to 
convert between the two.



Light and the electromagnetic spectrum

• Light is a type of energy: electromagnetic 
energy
• Comes in packets called photons, which 

have characteristics of both particles and 
waves
• Covers a wide range of energies, making up 

the electromagnetic spectrum
• Different parts of the spectrum have 

different names: gamma rays, X rays, 
ultraviolet, optical (VIBGYOR), infrared, 
microwave, radio



Energy, frequency, wavelength, and speed

The energy of a photon is directly related to its frequency (cycles/s)
   E = h 𝜈
As with any wave, the frequency, wavelength and speed are related by
   v = 𝜆𝜈
Light in a vacuum travels at the same speed, c, regardless of energy, so
   𝜆 = c / 𝜈
In a medium, light travels slower, so the wavelength changes
    𝜆 = c / n𝜈
where n is the index of refraction. 



Units

• Light can be characterized by energy, frequency, or wavelength
• At high energies, astronomers often use energy (MeV or keV)
• At lower energies, astronomers often use wavelength, but with 

different units:
 Angstroms = 10-10 m

 nanometer = 10-9 m
 microns = 10-6 m
 millimeters = 10-3 m
 centimeters = 10-2 m

• far-UV ( 0.01 - 0.1μ, 10-100 nm, 100-1000 Å)
• near-UV ( .1 - 0.35μ, 100-350 nm, 1000-3500 Å)
• optical ( 0.35 - 1μ, 350-1000 nm, 3500-10000 Å)
• near-IR (1000-10000 nm, 10000-100000 Å, 1 - 10μ)
• mid-IR ( 10 - 100μ)
• far-IR ( 100 - 1000μ)

• In the radio, astronomers may use cm or m, or frequency (MHz)



Measuring light

• Three fundamental quantities:
 intensity or surface brightness (radiance)
            flux (irradiance)
            luminosity (radiant flux)



Surface brightness

• the amount of energy received in a unit surface 
element per unit time from a unit solid angle in the 
direction ( θ, φ), where θ is the angle away from the 
normal to the detector surface element, and φ the 
azimuthal angle. 
• The solid angle is related to the physical size of an 

object and its distance: Ω = A/d2. Note units often 
used for solid angle: 
• sterradian : 4𝜋 in a sphere
• square degree : 4𝜋 (180/𝜋)2  ≈41253 square degrees in a 

sphere
• square arcsec



Flux

• The flux is the amount of energy passing through 
a unit surface element in all directions, defined by

                Fν =  ∫ IνcosθdΩ
where dΩ is the solid angle element, and the 
integration is over the entire solid angle subtended 
by the object
In astronomical applications, we usually point our 
telescope in the direction of the object, so θ=0, and 
the area we integrate over is small, so cosθ is well 
approximated by unity



Luminosity

• The luminosity is the intrinsic energy emitted by the source per 
second. For an isotropically emitting source: 

                    L = 4πd2F
where d is the distance to the source
• For a isotropic, constant source, this leads to the inverse square law:
                    F = L / 4πd2



What do we observe?

• Many objects in astronomy are very far away, so they subtend 
relatively small areas on the sky
• Resolved sources are those for which we can distinguish one location 

in the source from another.
• Our ability to distinguish depends on the tool we are using to observe
• For resolved source, we can observe the surface brightness

• Unresolved sources are those for which we cannot distinguish one 
location in the source from another: the sources appear “point-like”
• For unresolved sources, we can only observe the flux

• To determine the luminosity of a source, we must know the distance



Monochromatic flux

The amount of light emitted is generally a function of wavelength (or, 
alternatively, frequency), so we actually are often interested in 
estimates of the monochromatic flux/intensity/luminosity  (sometimes 
referred to  as flux/intensity/luminosity density)  :
           F𝜆 : flux / unit wavelength 
   or
           F𝜈 : flux / unit frequency



Monochromatic fluxes
• Since wavelength and frequency are inversely related, a fixed range in wavelength 

does not correspond to a fixed range in frequency, and vice versa. 
• Conversion from F𝜆 to F𝜈 depends on wavelength

• Integrating over a given range of wavelength and the corresponding range of 
frequency must give the same flux:

              ∫!"
!#𝐹𝜆 d𝜆 = −∫$/!#

$/!"𝐹𝜈 d𝜈
 where the – sign comes from reversing the limits (wavelength runs in opposite 
direction from frequency)
This implies
 𝐹𝜆 = 𝐹𝜈
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 and
                         𝜆 F𝜆 = 𝜈 F𝜈



Units

• Most astronomers work in cgs units
• Sometimes F𝜆, sometimes F𝜈 
• Sometimes F𝜈  as a function of 𝜆

• You may also run into the Jansky, which is a unit of monochromatic 
flux per unit frequency:

                   1 Jansky (Jy) = 10-26W/m2/Hz
      



Photon flux

• most modern detectors count photons not energy, so we observe 
photon fluxes, which are related to energy flux by

         photon flux = energy flux / energy per photon

                               = ∫ 𝐹𝜆
!
"#

 d𝜆
• Bolometers register energy, rather than photons



Polarization

• There is an additional property of light at a given 
wavelength/frequency: the polarization
• Light can be linearly and/or circularly polarized
• Polarization is often characterized by the Stokes parameters: I, Q, U, V
which give the intensity, two components of linear polarization, and 
the circular polarization
• The degree of polarization from astronomical sources is usually small, 

but polarization can arise from emission that is reflected or scattered 
light, and emission from regions where magnetic fields are significant



Terminology of astronomical measurements

• Photometry : broad-band flux measurement
• Spectroscopy: relative measurement of fluxes as a function of 

wavelength
• Spectrophotometry : absolute measurement of flux as a function of  

wavelength
• Spectropolarimetry : polarization as a function of wavelength
• Astrometry : concerned with positions of observed flux
• Morphology : intensity as a function of position; often, absolute 

measurements are unimportant
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Light, magnitudes, and the signal equation
  Magnitudes



Learning objectives

• Know how magnitudes are defined, be able to work with them very 
comfortably, and recognize that relative fluxes can be represented as 
magnitudes independent of the magnitude system.



Magnitudes

• Magnitudes have traditionally been used by astronomers to describe 
the amount of light from astronomical sources
• They can be used to describe fluxes, surface brightnesses, and 

luminosities 
• Magnitudes are a dimensionless way of representing brightness, 

defined by:
                                 𝑚 = −2.5 log $

$!
    or:
                                 𝐹	 = 	𝐹010%&.(	*

where 𝐹 is the flux of the object being described, and 𝐹0 is a reference 
flux that defines a photometric system



Magnitudes and relative fluxes

• In many cases, astronomers work with relative fluxes of two objects
• Within a given photometric system, this removes the reference flux
                  m1 – m2 = −2.5 log $"

$!

 $"
$!

 = 10%&.(	(+"%+!)

• Since magnitudes are logarithmic, differences in magnitudes correspond to 
flux ratios
• Ratios of magnitudes are generally unphysical!

• Note that relative fluxes are generally much easier to measure than 
absolute ones



Magnitudes and relative fluxes

• Defining equation first presented by Pogson (1856)

                  m1 – m2 = −2.5 log $"
$#

• Defined such that 5 magnitudes is a factor of 100 in brightness, and 
runs “backwards” (larger magnitudes are fainter)
• Every 2.5 magnitudes is a factor of 10 in brightness
• One magnitude is a factor of 10-0.4 ≈ 2.512 in brightness

• These are true within any photometric system, and do not require 
knowledge of F0
• Reference fluxes are only needed to go from magnitude to flux



Luminosities and absolute magnitudes

• Luminosities are represented by giving the magnitude that an object 
would have if it were located at a distance of 10 parsecs
• Using the inverse square law, this leads to the distance modulus:
                  m0 – M = 5 log d – 5
   where d is the distance in parsecs and m0 is the magnitude corrected 
for interstellar extinction
                   m0  = m - A



Monochromatic magnitudes

• Monochromatic fluxes can also be represented in magnitudes:
                         Fλ = F0(λ)10%&.(*$	

Note that this explicitly shows that the reference flux, F0(λ), may be a 
function of wavelength!
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Light, magnitudes, and the signal equation
  Photometric systems



Photometric systems

• As discussed previously, magnitudes are defined by
                                 𝑚 = −2.5 log $

$#
    or:
                                 𝐹	 = 	𝐹010%&.(	+

• If we are comparing brightnesses of two objects within the same system, 
we don’t need to know 𝐹0, but	if	we want to convert from a flux to a 
magnitude, or vice versa, we do
• We also recognize that fluxes depend on wavelength, so 
                                 Fλ = F0(λ)10%&.(+$	

   and F0 could depend on wavelength



Photometric systems

• You may come across three different types of photometric system 
zeropoints (choices of F0)
• STMAG  : F0 is a constant F𝜆
• ABNU : F0 is a constant F𝜈
• VEGAMAG  : F0 has the spectral shape of an A0V star



STMAG : relative to constant F𝜆
• Used by Space Telescope Science Institute
• F0 = 3.63x10-9 ergs / cm2 / s/ Å
   This is roughly the flux of Vega at 5500 A
 𝑚𝜆 = −2.5 log $$

$!
 = -2.5 log F𝜆 - 21.1

            (where F𝜆 is in units of ergs/cm2/s/Å)
                                 𝐹𝜆	 =	𝐹010

%&.(	*$	

• So, Vega will have a magnitude of 0 at 5500 Å, but will deviate from 
zero at different wavelengths/bandpasses to the extent to which its 
spectrum deviates from a flat F𝜆 spectrum 



ABNU: relative to a constant F𝜈
• Used by many surveys, e.g. SDSS (ugriz), panStarrs, …
• F0 = 3.63x10-20 ergs / cm2 / s/ Hz
   This is roughly the flux of Vega at 5500 Å
 𝑚𝜈 = −2.5 log $

$!
 = -2.5 log F𝜈 – 48.6

            (where F𝜈 is in units of ergs/cm2/s/Hz)
                                 𝐹𝜈	 = 	𝐹010%&.(	*%	

• So, Vega will have a magnitude of 0 at 5500 Å, but will deviate from 
zero at different wavelengths/bandpasses to the extent to which its 
spectrum deviates from a flat F𝜈 spectrum 



Bandpass magnitudes vs monochromatic magnitudes

• So far we’ve defined monochromatic magnitudes, m𝜆 and m𝜈

• Usually, magnitudes are used for fluxes integrated over some 
bandpass, i.e., photometry
• For observations in some filter bandpass T(𝜆):

                 𝑚 = −2.5 log 	 ∫ $$	!	, ! -!
∫ $!	!	, ! -!

   where 𝑇 𝜆  gives the transmission profile of the bandpass
   the extra factor of 𝜆 in there is so that the system is defined for 
photon flux not energy flux ( the hc cancels out in numerator and 
denominator)



Bandpass magnitudes

𝑚 = −2.5 log 	
∫ 𝐹𝜆	𝜆	𝑇 𝜆 𝑑𝜆
∫ 𝐹0	𝜆	𝑇 𝜆 𝑑𝜆

• The integrals could also be written as integrals over frequency

𝑚 = −2.5 log 	
∫ 𝐹𝜈/𝜈	𝑇 𝜈 𝑑𝜈
∫ 𝐹0	/𝜈	𝑇 𝜈 𝑑𝜈

• For STMAG, 𝐹0 is independent of 𝜆
• For ABNU, 𝐹0 is a constant F𝜈, so 𝐹0𝜆	is proportional to 𝜆-2

• Note that the magnitude will be roughly independent of the width of the 
filter bandpass, since the integrated flux is relative to the integrated flux of 
the reference system



VEGAMAG

• For VEGAMAG, the reference flux 𝐹0 is the spectrum of the star Vega
• To translate VEGAMAG to a flux, you need to know the spectral 

energy distribution of Vega
• VEGAMAGs give the flux of a star relative to the flux of Vega, so, by 

definition, Vega has a magnitude of 0 in all bandpasses



What photometric 
systems are used?
• The UBVRIJHK system is a ~VEGAMAG 

system
• The SDSS ugriz system is a ~ABNU 

system
• The STScI STMAG system is a STMAG 

system
• Even if the bandpasses were the 

same, the magnitude of a star in two 
different systems would be different!
• All systems are normalized around 

5500 A, so the difference grows as one 
moves away from this wavelength



• If you had the spectrum 
of an object on this plot, 
the difference between 
the location of the 
spectrum and one of the 
reference spectra would 
give you the magnitude 
of the object

• Again, usually, 
magnitudes are used for 
fluxes, i.e. integrals over 
a range in the spectrum

Differences between magnitude systems



Why are there different systems?

• STMAG and ABNU are conceptually much simpler
• However, absolute fluxes are hard to measure, while relative fluxes 

are easier, e.g. the flux relative to Vega (or some set of stars that have 
been measured relative to Vega)
• No astrophysical or artificial source has a “flat” spectrum!

• If you care about actual fluxes, you need to figure out how to do the 
absolute fluxes and, if you do this well, using STMAG or ABNU makes 
simpler physical sense 
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Light, magnitudes, and the signal equation
  Magnitude – flux conversion



Converting magnitudes to fluxes

• To convert from a magnitude in some bandpass to a flux in that 
bandpass:
• Roughly:  look up the flux of the reference spectrum at the central wavelength 

of the bandpass, which gives the flux for an object with m=0, and scale by the 
observed magnitude, to get approximate flux density at the central 
wavelength; multiply by the filter width to get the fluxx
• More precisely: integrate the reference spectrum over the bandpass, and 

scale by the observed magnitude



Photometric system data

From http://www.astronomy.ohio-
state.edu/~martini/usefuldata.html 

mistake



Estimating flux for objects

• In some cases, e.g., for observation planning, we may want to estimate the flux we will 
receive in different bandpasses, or as a function of wavelength, for some object of a 
given magnitude in one band pass
• Done in many exposure time calculators
• For example, estimate the flux as a function of wavelength for an object with V=17

• Clearly, we also need some information about the spectral energy distribution (SED), e.g., 
a blackbody temperature, spectral type, etc.
• Various libraries of spectra, e.g., of stars or galaxies, are available

• To get an estimate of the flux as a function of wavelength for your object:
• Get the flux in the SED at the central wavelength of the desired bandpass
• Get the flux in the reference spectrum for the photometric system at this wavelength
• Scale the SED such that the flux divided by the reference flux is 10-0.4m

• This gives you the desired flux as a function of wavelength
• If you want the flux is some other bandpass, read it off at the effective wavelength of the desired 

bandpass
• To do this to higher precision, integrate over the bandpass rather that using the flux at 

the central wavelength
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  Colors



What is a color?

• A color gives the relative amount of flux in one range of wavelength to that in 
another
• Color is a ratio of fluxes

• If we use magnitudes, the ratio of fluxes corresponds to a difference in 
magnitudes
• However, the reference system comes into it: a color is the ratio of fluxes 

between two different bandpasses relative to the same ratio in the reference flux
• So, for example:
   𝐵 − 𝑉 = 𝑚𝐵	 − 𝑚𝑉 = −2.5 log 	 ∫)$	!	+, ! &!

∫)#	!	+, ! &!
+ 2.5 log 	 ∫)$	!	+- ! &!

∫)#	!	+- ! &!

                                               = −2.5 log 	 ∫)$	!	+, ! &!
∫)$	!	+- ! &! + 2.5 log 	

∫)#	!	+, ! &!
∫)#	!	+- ! &!

                                        = −2.5 log 	 ∫)$	!	+, ! &!/∫ )$	!	+- ! &!
∫)#	!	+, ! &!/∫ )#	!	+- ! &!



Application

• A color in the SDSS system, e.g. g-r gives the ratio in flux between the g and 
r bandpasses, relative to that ratio for an object with a flat F𝜈
• g-r = 0 means the object has a spectral shape similar to that of a flat F𝜈 source

• A color in the UBVRI system, e.g., B-V gives the ratio in flux between the B 
and V bandpasses, relative to that ratio for an object with an A0V spectrum 
• B-V = 0 means the object has a spectral shape similar to that of an A0V star
• B-V = 2.5 means that the object has 10 times more flux in the V bandpass than the B 

bandpass relative to that flux ratio in an A0V star

• Why “similar” and not the same?
• Different spectral energy distributions could give the same total flux in a bandpass



Colors

• While it seems that one could define a color just as a ratio of fluxes 
without regard to a reference flux, consider the case where different 
bandpasses might have different widths
• You wouldn’t want a color to change if you were comparing a narrower 

bandpass at one wavelength to a broader one at another!
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  Signal equation



Learning objectives

• Understand the signal equation and the terms in it. 
• Understand what the signal equation is and is not used for



What objects emit and what we observe

• We’ve been discussing flux, surface brightness, luminosity and the 
quantities used to measure them
• In an actual observation, the amount of signal we detect depends on the 

tools we use to collect it: e.g., the collecting area of our telescope and the 
amount of time we collect for
• Photon flux is the number of photons per unit area per unit time
• Signal is the number of photons from an object detected in an observation

• When making actual observations, however, we generally don’t detect all 
of the flux that objects emit in our direction
• Some of it may be absorbed in the Earth’s atmosphere
• It may not be fully reflected by the mirrors of a telescope
• It may be attenuated by things we put in its path, like optics or a filter
• Our detectors may not be perfectly efficient in detecting it



Signal equation

• The signal equation relates the incoming flux to the observed signal

      S = 	Tt	∫ 𝐹𝜆
#
$%
𝑎𝜆𝑚𝜆𝑖𝜆𝑓𝜆𝑑𝜆	𝑑𝜆

where
           T  : telescope area
           t   : exposure time
           a𝜆  : atmospheric transmission function
           m𝜆 : mirrors (telescope) transmission function
           i𝜆 : instrument transmission function
           f𝜆 : filter transmission function
           d𝜆 : detector response function
Note that all of the transmission/response function may be a function of wavelength



Observed photon flux, S’

Given

        S = 	Tt	∫ 𝐹𝜆
!
"#
𝑎𝜆𝑚𝜆𝑖𝜆𝑓𝜆𝑑𝜆	𝑑𝜆

We can define the observed photon flux, S’:
        S’ = ∫ 𝐹𝜆

!
"#
𝑎𝜆𝑚𝜆𝑖𝜆𝑓𝜆𝑑𝜆	𝑑𝜆

        S  = S’ T t
When we make an observation, we observe S : we don’t need to 
separately know S’, T, and t
Formulating things in terms of S’ is helpful to determine how our signal 
will scale with exposure time and/or collecting area



Using the signal equation

• We generally want to measure the flux/photon flux from the object
• However, this is not usually done with the signal equation

• Many terms are hard to measure to high accuracy
• Some terms may vary with time

• What is the signal equation used for?
• Terms are generally well enough approximated to predict observed photon flux for 

an object with an estimated brightness 
àExposure time calculator
• Given an estimate for the observed photon flux, one can determine how much time 

is required to collect a desired signal
• Accuracy of a measurement depends on the signal
• For a required accuracy (determined by scientific goal), determine minimum 

exposure time to achieve the associated required signal



Other uses of the signal equation

• By observing object(s) of known brightness, use signal equation to 
estimate the throughput of your observing system
• Example: SDSS-V commissioning!
• Might also see effective area of an observing system (e.g., here)

• We’ve mentioned that one generally doesn’t go backward from 
observed signal to intrinsic flux using the signal equation because it is 
hard to know all of the terms to sufficient accuracy
• Generally, if we want to know the intrinsic flux, we usually measure signal 

relative to some other object of known intrinsic flux
• At some point, you need to measure the intrinsic flux of some object! For this, 

you work hard to understand all of the terms in the signal equation, and use 
it! 

S = 	Tt	∫ 𝐹𝜆
𝜆
ℎ𝑐 𝑎𝜆𝑚𝜆𝑖𝜆𝑓𝜆𝑑𝜆	𝑑𝜆

https://academic.oup.com/mnras/article/383/2/627/993537
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Learning objectives

• Understand the distinction between estimating count rates from an 
understanding of all of the terms in the signal equation vs. measuring 
the overall throughput (zeropoint) by observing stars of known 
brightness. 
• Know what instrumental magnitudes and zeropoints are. Understand 

the ideas behind the use of transformation coefficient.



Measuring brightnesses of objects

• If we don’t use the count equation to go from observed signal to 
intrinsic flux, how do we do it?
• Measure brightnesses relative to some other source of known flux



Differential photometry 

• If there are stars of known brightness (reference stars) in the same 
field as the object for which you’re trying to measure the brightness, 
then the atmospheric term cancels out, under the approximation that 
the atmosphere doesn’t vary over the angular distance between the 
two objects
• Clearly, only true to some level of accuracy!
• Can work even if the weather is “non-photometric”, i.e., there are clouds

• Determine ratio of program object signal to reference star signal and 
multiply reference star flux by that ratio to get program object flux
• In magnitudes, get the magnitude difference corresponding to the 

signal ratio



Differential photometry in practice: simple case

• Measure the signal of an object in the frame with known 
brightness/magnitude (reference star)
• Determine instrumental magnitude
              m = -2.5 log S/t      

• sometimes people might not normalize by t
• Sometimes people might add some arbitrary constant, e.g. 25, to make instrumental 

magnitude positive
• Given known magnitude of the reference star, determine instrumental 

zeropoint
         M = m + Z

• Determine instrumental magnitude of target object
• Add instrumental zeropoint to get calibrated magnitude!



Instrumental Zeropoint

M = m + Z
where lower case m is the instrumental magnitude and upper case M is 
the standard magnitude of the reference object (don’t confuse this 
with absolute magnitude!)

• Instrumental zeropoint gives the sensitivity of the system
• It is the magnitude of a star that would have an instrumental 

magnitude (-2.5 log S/t) of 0, i.e. a star that produces 1 photon per 
second
• The larger the zeropoint, the more sensitive the system



Real world issue: filter/sensitivity variation

• The simple prescription works exactly 
only if the wavelength dependence of 
your observing sensitivity matches that 
of the system in which the reference 
star brightness was measured
• In practice, there are small differences, 

e.g., from variations in filter profiles, 
detector sensitivities, etc.



Accounting for sensitivity differences

• To zeroth order, this doesn’t matter: you 
collect a little more or less light, at a 
slightly different range of wavelength
• However, consider two different objects 

that measure, that might have different 
spectral energy distributions (SEDs), i.e., 
a bluer object and a redder object
• If your sensitivity is a little bit ”redder”, 

you’ll get more extra signal in the red star 
than in the blue star
• In practice, you’ll measure a different 

zeropoint, i.e., a different sensitivity, for 
the blue star and the red star



Transformation coefficients

• Can calibrate this out to first order by using a transformation 
coefficient, parameterizing the difference in SED by the color of the 
object

                    M = m + t color + Z
• As previously discussed, the color in magnitudes is given by a 

difference in magnitudes in two different bandpasses. Since we want 
to measure the color in the region of the spectrum where our desired 
filter is, usually the color is taken between the observed filter and one 
at an adjacent wavelength, e.g., if you’re working in the V bandpass, 
you might use B-V, or V-R as the color



Multi-bandpass photometry

• If you’re observing in multiple bandpasses, e.g., if you want to be 
measuring colors of your object, there is a separate transformation 
equation for each filter, e.g.

              B = b + tB (B-V) + ZB

                     V = v + tV (B-V) + ZV

              R = r + tR (V-R) + ZR
 with a separate transformation coefficient and zeropoint for each filter
These are derived by observing multiple reference stars, where the 
reference stars must span a range of color; generally, this is done using 
a least squares fit, e.g., m-M as a function of color



Multi-bandpass photometry

Once you’ve determined the transformation coefficients and zeropoints 
from the reference stars, you apply them to get the standard magnitudes for 
the target object(s)
              B = b + tB (B-V) + ZB

                     V = v + tV (B-V) + ZV

Note that we’ve defined the transformation term using the standard 
magnitude, not the instrumental one
This is fine even if you don’t know that for your target object(s), so long as 
you have instrumental magnitudes in each filter, it’s just a matter of linear 
algebra to simultaneously solve for the two standard magnitudes (two 
equations with two unknowns). 



Subtleties

• Transformation coefficients parameterize spectral energy distributions as a 
function of colors
• However, it is possible for two objects to have different SEDs but still have 

the same color
• Transformation coefficients work to the extent that the SEDs of the 

program objects are similar to those of the reference (standard) objects
• The larger the differences in program SED to standard SED, the larger the 

potential systematic errors 
• The more different the response function is from the standard response 

function, the larger the potential systematic errors



Simple differential photometry

• Before we leave differential photometry, note that in some 
applications, you may not even care about zeropoints or 
transformation coefficients!
• This is often the case when studying variability of objects, where the 

science comes from the change of flux, without necessarily needing 
to know what the flux is



All-sky photometry

• What if you don’t have reference stars with known magnitude in the 
same field as observations of your program object?
• Need to compare with reference stars in other observations
• Now, atmospheric effects don’t cancel out! Need to account for 

different atmospheric absorption in different directions
• As we’ll discuss, this can be characterized as a function of airmass : how thick 

the column of atmosphere is in a given direction
• That only works if conditions are “photometric”


